

FOREWORD

This instruction and drawing set provides essential installation information unique to SOLAR FIRE. For game operation, bookkeeping, game adjustment, diagnostic and self-test and basic troubleshooting procedures, refer to the instruction booklet located in the envelope inside the coin door. For detailed troubleshooting and interconnection information, refer to Williams Solid State Flipper Maintenance Manual and Supplements.

SPECIAL CONSIDERATIONS WHEN REPLACING CIRCUIT BOARDS

CPU Board

. Revision level 7 CPU Boards (batteries located on lower left corner at board) of later boards must be used.
2. Must be equipped with blue-labeled Flipper ROMs and blue-labeled Game ROMs.
3. Jumpers W3, W10, W11, W14, W17, W19, W20, and W22 must be connected. Jumpers W4, W9, W12, W15, W16, W18, W21, and W23 must be removed. With the exception of W25, (Factory Setting Jumper) all other jumpers are not changed.

Driver Board

Must be equipped with zero-ohm resistors or wire jumpers (W9-W16) in place of switch matrix drive series resistors R204-R211.

Sound Board

Must be jumpered for ROM operation and be equipped with Sound ROM 7. (Jumpers W3, W5, W7, W9, W10, W12, and W15 connected; W2, W4, W6, W8, W11, and W13 removed).

Power Supply Board

1. Model D 8345 board required (equipped with relay).
2. Fuse F4 (20A SB) for flipper solenoids and magnets must be installed.

Display Boards

Model C 8363 Master Display and 7-digit Slave Displays required.

CONTENTS

Assembly and Interconnection 3/4
Inspection 3/4
Power Turn-On 5/6
Backbox Wiring Diagram 7
CPU Board Assembly Drawing 8
CPU Board Logic Diagram 9
Driver Board Assembly Drawing 10
Driver Board Logic Diagram (Sheet 1 of 2) 11
Driver Board Logic Diagram (Sheet 2 of 2) 13
Power Supply Assembly and
Schematic Diagrams 14
Power Wiring Diagram 15
Sound Board Assembly Drawing 16
Sound Board Logic Diagram 17/18
Insert Board Wiring Diagram 19
C 8363 Master Display Board Assembly Drawing 20
C 8363 Master Display Board Logic Diagram 21
C 8364 and C 8365 Slave Display Boards Assembly and Schematic Diagrams 22
Cabinet Wiring Diagram 23
Playfield Lamp Wiring Diagram 24
Playfield Solenoid Wiring Diagram 25
Playfield Switch Wiring Diagram 26

Assembly and Interconnection
With legs attached to cabinet and backbox positioned face-down on top of cabinet with the opening facing the rear of the cabinet proceed as follows:
A. Pull five cables from backbox.
B. Reach into right side of pedestal hole, pull up ground strap, and push it into backbox.
C. Remove ties securing cabinet and playfield cables to cabinet and pull up these cables.
D. Interconnect five cables. They are size and color coded.
E. Insert line cord into notch in cabinet. DO NOT PLUG IN AT THIS TIME.
F. Push remote volume control cable, White-Red solenoid ground cable, and transformer cable (terminated with four plugs) into backbox.
G. Lift up backbox and position on cabinet pedestal, engaging brackets for support.
H. Remove shipping blocks from insert door.
I. Secure backbox to cabinet using two bolts and washers.
J. Connect ground braid and White-Red wires under wing nut and washer at bottom of backbox.
K. Loosely position remote volume cable and Sound Board power cable in harness and plug connector into $10 J 4$ and 10J1, respectively.
L. Connect bridge rectifier connector $6 \mathrm{P} 1 / 6 \mathrm{~J} 1$, and plug remaining two transformer connections into 3 Jl and 3 J 9 on the Power Supply Board.

Inspection
A. Check all connectors in backbox for loose wire termination. Reseat any loose wires by pushing in on the terminal.
B. Push on all connectors attached to Master Display, CPU, Driver, and Sound Boards, and check terminations on capacitor and bridge rectifier at the lower right of the backbox.
C. Gently press on all the socketed IC packages on the CPU and Sound Boards.
D. Check that two fuses on the Sound Board, seven fuses on Power Supply Board, and two fuses on Insert Board are secure.
E. Push on the connector attached to Slave Display Boards.
F. Check that the line fuse in the bottom of the cabinet is secure.
G. Check the transformer input connector in bottom of cabinet for loose wire termination. Reseat any loose wires by pushing in on the termination.
H. Check the cabinet to coin door connector for lose wire termination. Reseat any loose wires by pushing in on the termination.

Power Turn-On and Game Setup
This machine MUST BE PLUGGED INTO A PROPERLY GROUNDED OUTLET to PREVENT SHOCK HAZARD to ensure ROPER GAME OPERATION. DO NOT use a "cheater" plug to defeat the ground pin on the line cord, and DO NOT cut off the ground pin. The line voltage MUST agree with that specified on the back of the cabinet or serious damage to the machine could occur. For low-line applications (105 or 210 V ac), refer to the power wiring diagram.

1. With the coin door closed, plug the game in and turn it $0 N$. The game should come on in the game over mode as indicated by the player 1 score reading zero, game over lights lit, and the high score to date alternating with the player scores.
2. If the game comes on in the diagnostic mode (number of credits display showing 04 , ball in play display showing 00 , and player 1 display showing game identification) turn the game OFF and ON again.
a. If the game now comes on in the game over mode the bookkeeping and game evaluation totals have been reset to zero.
b. If the game still comes on in the diagnostic mode, open the coin door and turn the game OFF, and ON twice. This is an indication of the batteries being removed with the power OFF or coming loose during shipment. This has also resulted in features reverting to factory settings. Any changes from factory settings must be reentered using procedures provided in the instruction booklet.
3. If the game still comes on in the diagnostic mode, refer to troubleshooting procedures in the maintenance manual.

Lift plastic at the left of the right ramp and insert captive ball through opening underneath. Place three balls on playfield next to outhole.
5. Perform diagnostic tests and make any desired changes to features as described in the instruction booklet.

(2) +18 VMPC
(3) ackouio

NOTES:

1. CONNECTIONS ARE INDICATED BY CIRCLED NUMBERS AS FOLLOWS:
(1) CPU BOARD
(2) DRIVER BOARD
(3) POWER SUPPLY BOARD
(4) MASTER DISPLAY BOARD
(5) SLAVE DISPLAY BOARD
(6) BACKBOX
(7) CABINET
(8) PLAYFIELD
(9) INSERT BOARD
(10) SOUND BOARD
(11) NOT ASSIGNED
2. REFER TO POWER WIRING DIAGRAM FOR CONNECTIONS TO 3P1.

D SPLAY STROBE UƯTPUTS

SOUND CONTROL a COMMAS

BILL OF MATERIAL				
$\begin{aligned} & \text { ITEM } \\ & \text { NOD } \end{aligned}$	PART NQ	OESIGAMTION	DESCRIPTION bAAREPC. BOARD CPU 74125 HEX TRISTATE BUFFER	AECD
	5764-0996s-x0			
2	5280-09408-x0	-102		1
	5370-08989-00	$1 \mathrm{C} 3,1 \mathrm{C4}, 1 \mathrm{C} 8$	8 8T97 HEX TRISTATE GUFFER	3
	5281-09308-x0	109	$74 L 5245$ OCTAL BUFEER	1
	5280-09010-00	106	741544 TO 16 DECODER	1
	5280-09013-00	1 C 7	7404 HEX INVERTER	1
	5281-09235-00	$1 \mathrm{Cl\mid}$	$74 L S I O$ TRIPPLE 3 INVERTER	1
	5280-09973-00	1 Cl 12	7408 QUAD AND	1
	5340-09409-80	12.13.1C.16	2114-45 $1 \mathrm{~K} \times 4$ STATIC RAM	2
	5281-09246-00	IC. 15	74 LSI39 OUAL 2 TO 4 LINE DECQDER	1
	3341-09553-00	$1 \mathrm{C}_{2} \mathrm{O}$	ROM $2 \mathrm{~K} \times 8$ LOWER	1
	5341-09554-00.	1517	ROM 4 KXX UPPER	1
	5430-08972-00	1 C18,1c 36	MCEB621 PIA	2
14	5340-09017-00	IC. 19	MC 5IOIGMOS BAM	1
15	5431-09449-00	1 C 23	MC 1455P1 TIMER	1
16	5280-09073-00	C24,1632.1633	F400 QUAD 2 INPUT NAND	3
17	5310-09236-00	1 C 25	4020 CMOS 14 BIT COUMTER	1
	5310-09237-00	1610	4071 CMOS QUAD 2 INPUT NOR	1
19	5281-09247-00	1C 5, 1C 31	$74.502 O U A D 2 I N P U I M O R ~$	2
20	5280-09407-x0	1 C 34	74478 CD TO 7 SEG LED DISP	1
	5671-09411-00	$1 C 35$	MAN 72A 7 SEGLED DISP	1
	5019-09238-00	$1 \mathrm{C} 28,1 \mathrm{C} 29$	13 DIPRES./PACK 4.7 K OHM	2
	5019-09223-00	1 C 37	15 OIPRES/PACK $10 \times$ OHM	1.
24	5645-09025-00	OS1,DS2	8 STO OIP SWITCHES.	2
25	5075-09018-00	ZR1	IN5996 ZENER OIODE 6.8V	1
26	5075-09099-00	ZR2	IN5990 REMER DIODE 3.9V	1
27	5020 -08919-00	D1-017,019	INA148 DIODE	18
28	5160-08938-00	03-09	2N4 4OI NPN TRAMSTSTOR	7
2,2	5180-09016-00	Q1,02	2NA 403 PNP TRAMSISTOR	2
30	5070-09266-00	018	INS8170100E	1
31.	5520-09020-00	CRI	CAYSTAL 3.58 MHz	1
3.2	5010-09358-00	RS,R9,R2O	RESISTOR FC IK OHM 5% V/4W	3
33	5010-08983-00	R2,R6-R8R21,R28	RESISTOR FC $3.3 \mathrm{KOHM} 5 \% 1 / 4 \mathrm{~W}$	6
34	5010-0899+00	$\begin{aligned} & R 13-R 18, R 29 \\ & R 33-R 3 S, R 4 O \text { R42 } \end{aligned}$	RESISTOR FC $4.7 \times$ OMM 5% V/W	13
35	5010-09086-00	R22	RESISTOR FC 6.8 K OHM 5% / 4 WW	1
36.	3010-09036-00	R19, 830°	RESISTORFC 100 OHM $5 \% \mathrm{l} / \mathrm{4W}$	2
37	5010-09187-00	R 36-R39,R46-R50	RESISTORFC 150 OHM $5 \% / / 4 \mathrm{~W}$	9
38	5010-09113-00	R23,R26	RESISTORFC 33 K OHM 5% / $/ 4 \mathrm{~W}$	2
39	5010-09034-00.	R1, R^{\prime},	RESISTOR FC IOK OHM 5% / 4 W	2
40	5010-09241-00	R25,R32, RiO, A11	RESISTOR FC 22 K OHM 3/81/4W	4
41	5010-08998-00	R27	RESISTOR FC 2.2ROHM 5\%. $1 / 4 \mathrm{~W}$	1
42	5010-09039-00	R12	RESISTOR FC 10 OHM $5 \% / / 4 w$	1
43	5010-094442-00	R43	RESISTOR.FC 330世 OHM 5% /4W	1
44	5010-08997-00	R 24,R 31	RESISTOR FC 27 K OHM $5 \% 1 / 4 \mathrm{~W}$	2
15	5010-09083-00	R44,R45	RESISTOR FC 470 OHM $5 \% / 1 / 4 \mathrm{~W}$	2
46	5043-08980-00	$C 1-C 22, C 28, C 30$ C32-637C63-C67 $C 783$	CAPACITOR,CERAMIC :OIMF.D SOV	36
42	5040-08986-00	C23	CAPACITOR ELECT, 100 MFD . 10 V	1
48	50+3-08996-00	C24	CAPACITOR CERAMIC JMFD 50 V	1
49	5043-09159-00	C25 626	CAPACITOR CERAMIC 27PFD IKV	2
50	5041-09243-00	C27	CAPACITOR TANT. 10 M FOIOV	1
51	5041-09031-00	C31	CAPACITOR TAMT IMFD 25 V	1
52	5043-09030-00	C84	CAPACITOR CERAMIC O47MFO 50V	1
53	5043-09065-00	$\begin{array}{\|r\|} \hline-29, c 38-C 62 \\ C 60-C 82, C 85, c 86 \\ \hline \end{array}$	CAFACITOR CERAMIC 470PFD 50V	43
54	5671-09019-00	LEDI,LED2	LEEPDED	2.
55.	SEENOTE	SW1,5W2	SWITCH MOMENTARY	2
56	588-09021-00		BATTERY HOLDER \# rII.	1
57	5791-09026-00	4.11	HEADER 09-64-1083 8PIM.	5
58	5791-09028-00	113.154	HEADER 09-55-1041 4 PIN	3
59				
60	5791-09027-00	$132135-1.37$	HEADER 09-65-1091 9 PIN	4
61	5791-09043-00	158	HEADER O9-65-121 12 PIN	1
62	5700-08985-00		40 PIN IC SOCKET	1
63.	5700-09004-00		24 PIN IC SOCKET	6
-64	5010-09534-00	W3,W6,W8, $210, W 14$ wid wif,wis,w20, W25,w 26,w29, 422	RESISTORFC O OHM V/4W	13
65	5824-09248-00	IPI-TPIO	TEST TERMINALS*1502-1	10

NOTE: USE EITHER 5641-09312-00,5641-09024-00 OR 5641-09371-00

$\begin{array}{c\|} \hline \text { ITEM } \\ \text { NO. } \end{array}$	PART No.	$\begin{aligned} & \text { PART } \\ & \text { DESIGNATION } \end{aligned}$	DESCRIPTION	$\begin{gathered} \text { REQ'D. } \\ \text { NO. } \end{gathered}$
1	1-2001-131		bare p.c. board	1
2	5A-8948	IC B, IC ${ }^{\text {a }}$	N7402 QUADRUPLE 2 INPUT POSITIVE NOR GATE	2
3	5A-8974		7406 HEX INVENTER BUFER PRIEERS W/OPEN COLLE HIGH VOLTAGE OUTPUTS	4
4	5A-8973	IC1 THRU IC4, IC6, [C7, IC13, IC14	NT4OB QUAGRUPLE 2 IN PUT PDSITIVE AND GATE	-
5	5A-8975	IC15, IC1E	MCI4049 INVERTING HEX BUFFER	2
6	5A-8972	IC 5, IC IO, IC I1	MCGAPTER PERIPHERAL INTERFACE	3
7	54-8938		2N4401 npn transistor	23
8	5A-8976	$046,049,050,052$, $054,056,058,060$, 065, 070, $072,074,076$	2NG427 DARLINGTON NPN TRANSISTOR	16
9	54-8977	$\begin{aligned} & 02,04,06,08,010, \\ & 012,015,017,019,021, \\ & 025,027,029,031, \\ & 033,035,037,039, \\ & 041,043,045 \\ & \hline \end{aligned}$	TIPIRQ OARLINGTON NPN POWER TRANSISTDR	22
10	54-8978	$\begin{aligned} & 063,065,067,069, \\ & 071, \\ & 073,075,077, \end{aligned}$	TIP42 PNP POWER TRANSISTOR	8
11	5A-8979	047, $049,051,053$, $055,057,059,061$,	2NG122 NPN POWER TRANSISTOR	8
12	5A-6258	21	INAOO1 OIODE	1
13	5A-8919	dz ThRUD ${ }^{\text {d }}$	1N4148 0100 E	8
14	5A-9014	S1 thru se	$2 \mathrm{NSO60}$ SCR	8
15	5A-6980	C1 THRU C14, C2d, THRUC26,C30, 3 , C38, C47, C48	CAPACITOR, CERAMIC, 01 mFD. $+80-20 \% 50$ マ.	22
16	5A-8995	C16 THRUS23	$\begin{aligned} & \text { CAPACITOR }{ }^{\text {POOLYESTER FILM, }} \\ & \text { I MFD. } 10 \% \end{aligned}$	7
17	5A - 9065	$\begin{aligned} & \text { C37 THRU C46, } \\ & \text { C49 THRUC56 } \end{aligned}$	$\begin{aligned} & \text { CAFACITOR, CERAMIC, } 470 \mathrm{PFD} \text {. } \\ & 20 \% 50 \mathrm{~V} \text {. } \end{aligned}$	16
18	5A-8986	cis	CAPACITOR, ELECT, 100 MFO. 10 V .	1
; 9	5A-6996	C36	$\begin{aligned} & \text { CAPACITOR, CRAMIC, MFD. } \\ & +80-20 \% \text {. } 50 \mathrm{~V} \text {. } \end{aligned}$	1
20	5A-8991	R1 THRU R6, R27,R77 $\begin{array}{c}\text { THRU R92 } \\ \text { R15 } \\ \text { THRU R19 }\end{array}$	RESISTOR, FC, 4.7 K OHM 10% 1/4 w	62
21	5A-8983	R27	RESISTOR, FC, $3.3 \mathrm{KOHM} 10 \% / 4 \mathrm{w}$	1
22	5A-8984		RESISTOR, FC, IK OHM 10% 1/4W	24
23	54-8992	R7, R10, R13, R16, R19, R22, R29, R32, R35, R38, R41, R44, R47, R50, R53, R56, R69, R74, R65, R68, R71.	PESISTOR, FC, 560 OHM $6 \% 1 / 4 \mathrm{~W}$	22
24	5A-8993	RB, R4, R14, R17, R2O, R23, R30, R33, R36, R39, R42, R45, R43, RE1, R54, R57, R60, R63, R66: R69, R72, R75	RESISTOR, FC, 68 OHM $10 \% 1 / 2 \mathrm{~W}$	22
25	5A-8997	R9, R12, R15, R15, R21, R24, R25, R31, R34, R37, R4C, R43, R46, R49, R52, R55, R58, R61, R64, R67, R73, R73,	RESISTOR, FC, 2.7 K OHM $10 \% 1 / 4 \mathrm{w}$	23
26	5A-8817	R26	RESISTOR, FC, 10 K OHM 10% 1/4 W	1
27	5A-8998	R141 THFU R148	RESISTOR, $F C, 2.2 \mathrm{KOHM} 10 \% / 1 / \mathrm{W}$	B
28	5A-8999-1	K149 THRU R156	RESISTOR, FC, 27 OHM 10% 2W	8
29	5A-9084	R95, R100, R106, R112, R118, R124, R130,R136		8
30	5A-9085	$\begin{aligned} & \text { R93, R99, R105, R111, } \\ & \text { R117, R123, R129, R135 } \\ & \hline \end{aligned}$	RESISTOR, FC, $1.5 \mathrm{KOHM} 10 \% 1 / 4 \mathrm{~W}$	-
$3:$	5A-9086	R94, R10i, R107, R113, R119, R125, R131, R137	RESISTDR, FC, 6.8 K OHM $10 \% \frac{1}{4} \mathrm{~W}$	8
32	5A-9037	$\begin{array}{\|l\|} \hline R 98, R 104, R 110, R 116, \\ \text { R122, R128, R134, R140 } \\ \hline \end{array}$	$\begin{aligned} & \text { RESISTOR, WIREWOUND. } 4 \text { OHM } \\ & 10 \% 3 \text { WATT } \end{aligned}$ $10 \% 3 \text { WATT }$	8
33	5A-8994	z)	RELAY-4 POLE-5 AMP. CONTACTS 40 OHM COIL 6 V.D.C.	1
34	5A-9066	2 PI	8 PIN RECEFTACLE	B
35	54-9027	2 J 2 THRU 2 Ji3	9 Pin header	12
36	5A- 5834	W9 THPU WIS	RESISTOR, FC, 0 Ow, $1 / 4 \mathrm{~W}$	8

- R149 THRU R156 MUST BE MOUNTED $\frac{1}{8}$
ABOVE SURFACE OF BOARD.

Driver Board Logic Diagram
(Sheet 1 of 2) 11/12

Driver Board Logic Diagram

JUMPER WIRES ON GPI SHOWN WITH SOLID LINES ARE CONNECTED FOR
IITV.A.C. OPERATION. ONLY THE ONE
SHOWN WITH ADASHED LINE IS CON-
NECTED FOR 220 V.A.C. OPERATION.
4. FOR LOW-LINE CONDITIONS (IOS OR $2 I O$ V.A.C.) MOVE BLK-WHT WIRE FROM 6TI-4 TO 6TI-3) Q MOVE 2 WHT-RED WIRES FROM 6TI-8 TO 6TI-7.

$$
\begin{aligned}
& 2 \text { WHT-RED WIRES FROM 6TI-8 } \\
& -7 .
\end{aligned}
$$

Power Wiring Diagram 15

Sound Board Logic Diagram

答落

言品

${ }^{4} \mathbf{4 J 1 / 5 1 / 5 5 1}$（ （PLAYERER 1 ）

Insert Board Wiring Diagram

BILL OF MATERIA_					
ITEM	PART NO.	DESAR PAGNTION	DESCRIPTION	REQ' D	
1	$576709468-00$		CREDITMATCH SLAVE PC. BOARD	1	
2	$23-3845$		FOAM DISPLAY-BACK	1	
3	$5670-09448-00$		4DIGIT DISPLAY	1	
4	$5791-05488-00$	$J 1$	2O PIN RIBBON HEAOER	1	
5	$23-6546$		FOAM DISPLAY - FRONT	1	
6	$03-7573-2$		CAPLUG	1	

(4)

C 8365 CREDIT/MATCH SLAVE DISPLAY

BLLL OF MATERIAL				
ITEM	PART Ma	Cesismition	OESCRIPTION	REOtD
1	S102-09020.xp		SLAVE OSPAAY PC. POARD	,
2	25-654		OISPLAY MTG ADHESIVE FOAM	1
3	2070.02930-x0		7 DIGIT DISPLAY	1
4	5701-000120-x	J	20 PIN P1BEON HEADER	1
5	02-7812-2		CAPLUG	1

* SEE INSERT BOARD WIRING DIAGRAM FOR CONNECTIONS FOR BACKBOX LAMPS.

ONLY CONNECTIONS TO LAMPS IN LOWER PLAYFIELD ARE ROUTED THRU 8P5/8J5.

GENERAL
ILLUMINATION

TYPICAL

Switch
No. Function (Score*)
Plumb Bob Tilt
02 Ball Roll Tilt
03 Credit Button
4 Right Coin Switch
Center Coin Switch
Left Coin Switch
Slam Tilt
High Score Reset
Left Magnet Button
Right Magnet Button
Left Kicker (10)
Right Kicker (10)
Left Outlane $(5,000)$
Right Outlane $(5,000)$
Left Inside Rollover $(1,000)$
Right Inside Rollover (1,000)
Top Eject Hole $(5,000 / 10,000)$
Bottom Right Eject Hole (5,000/10,000)
Bottom Left Eject Hole (5,000/10,000)
Outhole
Ball Ramp Right Switch
Ball Ramp Center Switch
Ball Ramp Left Switch
Ballshooter Trough
Right Bull's-Eye Target $(10,000)$
Right Ramp Rollunder (5,000 / Mystery)
Bottom Left 3-Bank, Bottom Target (1,000)
Bottom Left 3-Bank, Middle Target $(1,000)$
Bottom Left 3-Bank, Top Target $(1,000)$
Bottom Right 3-Bank, Top Target $(1,000)$
Bottom Right 3-Bank, Middle Target $(1,000)$
Bottom Right 3-Bank Bottom Target(1,000)
Top 3-Bank Bottom Target $(1,000)$
Top 3-Bank Middle Target (1,000)
Top 3-Bank Top Target (1,000)
4-Bank "1" (Left) Target $(1,000)$
4-Bank "2" Target $(1,000)$
4-Bank "3" Target $(1,000)$
4-Bank " 4 " (Right) Target (1,000)
Horseshoe Rollover (10,000 / Lit Value)
SOLAR Ramp Target $(10,000)$
SOLAR Gun (5,000/10,000 Per Second)
43 Playfield Tilt
*All scores doubled when letter in F-I-R-E is flashing.
Mystery for switch 26 (awarded when lit) is spotting magnet lamps, letter in S-O-L-A-R, or Drain Shield, or scoring random point values.
With full bonus(es), 1,000 points is awarded in place of each bonus advance.

